Tuesday, July 25, 2023

Bringing the power of nanotechnology to particle physics

 

Bringing the power of nanotechnology to particle physics

(Nanowerk News) Particle physicists are on the hunt for light. Not just any light, but a characteristic signal produced by the interaction of certain particles — like ghostly neutrinos, which are neutral fundamental particles with very low mass — with a detector that contains an atomic sea of liquefied noble gases.
Even if it were brighter, this light signal would be undetectable by our eyes because it falls in the ultraviolet (UV) range of the electromagnetic spectrum. And just as our eyes are not equipped to see UV light, most conventional photodetector systems for particle physics experiments work much better in the visible range than they do in UV.

However, new work at the U.S. Department of Energy’s (DOE) Argonne National Laboratory is bringing the power of nanotechnology to particle physics in an effort to make photosensors work better in experimental environments where UV light is produced, like massive liquid argon-filled detector modules.
“You can go online and buy photosensors from companies, but most of them are in the visible range, and they sense photons that we can see, visible light,” said Argonne high-energy physicist Stephen Magill.

To make their photosensors more sensitive to UV radiation, Magill and his colleagues at Argonne and the University of Texas at Arlington applied coatings of different nanoparticles to conventional photodetectors (Scientific Reports, "Wavelength-shifting properties of luminescence nanoparticles for high energy particle detection and specific physics process observation"). Across a wide range of varying compositions, the results were dramatic. The enhanced photosensors demonstrated significantly greater sensitivity to UV light than the coating-free photodetectors.









The reason that the nanoparticles work, according to Magill, has to do with their size. Smaller nanoparticles can absorb photons of shorter wavelengths, which are later re-emitted as photons of longer wavelengths with lower energy, he said. This transition, known to scientists as the “Stokes shift,” converts UV photons to visible ones.

“We’re always looking to find better materials that will allow us to detect our particles,” Magill said. “We’d like to find a single material that will allow us to identify a specific particle and not see other particles. These nanoparticles help get us closer.”
The types of experiments for which scientists use these enhanced photodetectors are considered part of the “intensity frontier” of high-energy physics. By being more sensitive to whatever small ultraviolet signal is produced, these nanoparticle coatings increase the chances of detecting rare events and may allow scientists a better view of phenomena like neutrino oscillations, in which a neutrino changes type.

The advantages of this kind of new material could also reach beyond the purview of particle physics. Magill suggested that the particles could be incorporated into a transparent glass that could enhance the amount of visible light available in some dim environments.
“There’s a lot of light out there between 300 nanometers and 400 nanometers that we don’t see and don’t use,” Magill said. “By shifting the wavelength, we could create a way for that light to become more useful.”




International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   International Conference on Advanced Nanomaterials and Nanotechnology  Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================













First electric nanomotor made from DNA material

First electric nanomotor made from DNA material

The tiny machine made of genetic material self-assembles and converts electrical energy into kinetic energy. The new nanomotors can be switched on and off, and the researchers can control the rotation speed and rotational direction.

Be it in our cars, drills or the automatic coffee grinders – motors help us perform work in our everyday lives to accomplish a wide variety of tasks. On a much smaller scale, natural molecular motors perform vital tasks in our bodies. For instance, a motor protein known as ATP synthase produces the molecule adenosine triphosphate (ATP), which our body uses for short-term storage and transfer of energy.
While natural molecular motors are essential, it has been quite difficult to recreate motors on this scale with mechanical properties roughly similar to those of natural molecular motors like ATP synthase. A research team has now constructed a working nanoscale molecular rotary motor using the DNA origami method.

The team was led by Hendrik Dietz, Professor of Biomolecular Nanotechnology at TUM, Friedrich Simmel, Professor of Physics of Synthetic Biological Systems at TUM, and Ramin Golestanian, director at the Max Planck Institute for Dynamics and Self-Organization.

A self-assembling nanomotor

The novel molecular motor consists of DNA – genetic material. The researchers used the DNA origami method to assemble the motor from DNA molecules. This method was invented by Paul Rothemund in 2006 and was later further developed by the research team at TUM. Several long single strands of DNA serve as a basis to which additional DNA strands attach themselves to as counterparts. The DNA sequences are selected in such a way that the attached strands and folds create the desired structures.

"We’ve been advancing this method of fabrication for many years and can now develop very precise and complex objects, such as molecular switches or hollow bodies that can trap viruses. If you put the DNA strands with the right sequences in solution, the objects self-assemble,” says Dietz.
The new nanomotor made of DNA material consists of three components: base, platform and rotor arm. The base is approximately 40 nanometers high and is fixed to a glass plate in solution via chemical bonds on a glass plate. A rotor arm of up to 500 nanometers in length is mounted on the base so that it can rotate.

Another component is crucial for the motor to work as intended: a platform that lies between the base and the rotor arm. This platform contains obstacles that influence the movement of the rotor arm. To pass the obstacles and rotate, the rotor arm must bend upward a little, similar to a ratchet.



















Targeted movement through AC voltage

Without energy supply, the rotor arms of the motors move randomly in one direction or the other, driven by random collisions with molecules from the surrounding solvent. However, as soon as AC voltage is applied via two electrodes, the rotor arms rotate in a targeted and continuous manner in one direction.

“The new motor has unprecedented mechanical capabilities: It can achieve torques in the range of 10 piconewton times nanometer. And it can generate more energy per second than what’s released when two ATP molecules are split,” explains Ramin Golestanian, who led the theoretical analysis of the mechanism of the motor.
The targeted movement of the motors results from a superposition of the fluctuating electrical forces with the forces experienced by the rotor arm due to the ratchet obstacles. The underlying mechanism realizes a so-called “flashing Brownian ratchet”. The researchers can control the speed and direction of the rotation via the direction of the electric field and also via the frequency and amplitude of the AC voltage.

“The new motor could also have technical applications in the future. If we develop the motor further we could possibly use it in the future to drive user-defined chemical reactions, inspired by how ATP synthase makes ATP driven by rotation. Then, for example, surfaces could be densely coated with such motors. Then you would add starting materials, apply a little AC voltage and the motors produce the desired chemical compound,” says Dietz.

International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   International Conference on Advanced Nanomaterials and Nanotechnology  Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================

















Monday, July 24, 2023

Improving crystal engineering with DNA

 

Improving crystal engineering with DNA

(Nanowerk News) Northwestern investigators have demonstrated that fine-tuning DNA interaction strength can improve colloidal crystal engineering to enhance their use in creating an array of functional nanomaterials, according to a recent study published in ACS Nano ("Programming Nucleation and Growth in Colloidal Crystals Using DNA").
Chad Mirkin, PhD, professor of Medicine in the Division of Hematology and Oncology, the George B. Rathmann Professor of Chemistry at Northwestern’s Weinberg College of Arts and Sciences, and director of the International Institute for Nanotechnology, was senior author of the study.

Colloidal crystal engineering with DNA involves modifying nanoparticles into programmable atom equivalents, or “PAEs,” which are used to form colloidal crystals that can then be used for designing programmable, synthetic DNA sequences.

Most recently, this process has focused on controlling crystal size and shape, however, even with established methods, it can be difficult to separate crystal formation, or nucleation, and growth.







                             


“New crystals can nucleate throughout the process while existing ones are growing throughout the process, and so you can have some very small crystals that might form late in the process and large ones that are growing the entire time, and you end up with a really non-uniform population in terms of the sizes of the crystals. So, trying to separate those two events, the growth from initial crystal formation, was the problem that we wanted to address,” said Kaitlin Landy, a PhD student in the Department of Chemistry in the Weinberg College of Arts and Sciences and co-lead author of the study.

In the study, Mirkin’s team explored how DNA interaction strength can be used to separate nucleation and growth in colloidal crystallization.
To do this, the team created two groups of complementary nanoparticles: one batch containing complementary base pairs, called “seed” PAEs, and the other containing mismatched base pairs to make “growth” PAEs.

“So, you have your initial crystals [‘seed’ particles] that are forming a solution, and then at a later time your weaker ones [‘growth’ particles] are able to grow on top of what’s already there,” said Kyle Gibson, a postdoctoral fellow in the Mirkin laboratory and a co-lead author of the study.
Using this method, the investigators were able to improve crystal uniformity. They could also independently select the nanoparticle and the DNA shell sequence and essentially mix and match them, allowing them to incorporate different types of materials into the crystals.

“One thing that we think is really powerful moving forward is thinking about how we can track these [crystallization]processes by using different particle cores,” Gibson added.
“This method can be used to make these interesting core-shell structures in a single step, which previously required multiple steps with post-synthetic stabilization of the first crystal before the second growth step,” Landy said. “With these two different DNA interaction strengths, if we can essentially label where the different types of particles are going in the final structure, it’s useful to investigate those fundamental questions.”


International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   International Conference on Advanced Nanomaterials and Nanotechnology  Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================







Nanotechnology enhances the effectiveness of T cells that attack tumors

 

Nanotechnology enhances the effectiveness of T cells that attack tumors


(Nanowerk News) Vanderbilt researchers are bolstering the fight against cancer with technology that enhances the effectiveness of T cells that attack tumors. The cutting-edge research was recently published in the journal Science Immunology ("STING-activating nanoparticles normalize the vascular-immune interface to potentiate cancer immunotherapy").



                                                  
                                                                



Cancers co-opt both the immune and cardiovascular systems to fuel their own growth, researchers say. They do this in part by forming new blood vessels that provide essential nutrients to rapidly dividing cancer cells. T cells in the immune system also use blood vessels as conduits for finding and invading tumors. But vessels in tumors are often abnormal and put up barricades that impede the ability of T cells to locate and kill cancer cells.

However, using a nanotechnology invented in the Immunoengineering Lab at Vanderbilt, researchers discovered they could reverse – or normalize – the malformed tumor vasculature by activating the stimulator of interferon genes (STING) pathway, a component of the immune system that plays an important role in protecting against pathogen infection and the development of cancers.
John T. Wilson, associate professor of chemical and biomolecular engineering at Vanderbilt and a corresponding author on the paper, said that the ability of the technology to reprogram the vasculature of tumors can help make T cells more effective at eradicating cancer cells.

“This allowed T cells to better infiltrate and destroy tumors in mouse models of kidney and breast cancer and enhanced the efficacy of immunotherapies that are currently being used in patients,” said Wilson, who is also Principal Investigator of the Immunoengineering Lab and a Chancellor Faculty Fellow.
In the publication, researchers also discuss testing their STING-activating nanoparticle (STAN) technology on tumors that had been surgically removed from patients with renal cell carcinoma (RCC). Consistent with findings from their experiments with mice, they found that STANs “demonstrated superior immunostimulatory activity,” offering “initial evidence supporting the potential use of STANs as a strategy to coordinate antitumor innate immunity and vascular remodeling in human RCC.”

Such breakthroughs are needed. This year, nearly two million new cancer cases and more than 600,000 cancer deaths are projected to occur in the United States, according to the American Cancer Society.
“While this technology isn’t yet ready for use in cancer patients, our study revealed an exciting new strategy for improving responses to cancer immunotherapy,” said Wilson.

International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   International Conference on Advanced Nanomaterials and Nanotechnology  Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================







Friday, July 21, 2023

Measuring nanocomposite structures with neutron and x-ray scattering

 

Measuring nanocomposite structures with neutron and x-ray scattering

(Nanowerk News) Small-angle scattering of x-rays and neutrons is a useful tool for studying molecular and nanoparticle structures. So far, however, experiments have revealed a surprising lack of nanoparticle structure in certain nanocomposite materials – whose molecular skeletons are reinforced with nanoparticles previously treated with polymer adsorption.

In a new approach detailed in EPJ E ("On the absence of structure factors in concentrated colloidal suspensions and nanocomposites"), Anne-Caroline Genix and Julian Oberdisse at the University of Montpellier, France, show that these patterns can only be produced through attractive interactions between nanoparticles with a diverse array of shapes and sizes.
The duo’s results highlight the rapidly improving capabilities of small-angle scattering instruments, and could also help researchers to improve their techniques for studying nanocomposites – with applications in areas including miniaturised electronics, biological tissue engineering, and strong, lightweight materials for aircraft.






When beams of x-rays or neutrons interact with atoms in material samples, the resulting transfer of momentum causes them to scatter in characteristic patterns, which vary depending on the sample’s molecular structure. In recent years, instruments for measuring this scattering have rapidly improved, offering faster data acquisition, as well as more accurate and extensive measurements of the changes in particles speeds and directions.
In their recent research, Genix and Oberdisse have used the technique to study the structures of concentrated, polymer-based nanocomposites. It is well known that at high nanoparticle concentrations, interactions between the particles modify the scattering pattern.

Yet surprisingly in their experiments, the duo found that this didn’t seem to happen: instead, the x-ray scattering patterns they observed seemed to indicate individual nanoparticles. To explain this result, the researchers performed numerical simulations to relate the positions of nanoparticles in space to the scattering patterns they observed.
They discovered that for high nanoparticle concentrations, attractive interactions between nanoparticles with a diverse array of shapes and sizes produces an almost ‘structureless’ state in the nanocomposite – explaining the lack of specific features in their observations. This discovery offers important insights into the molecular properties of nanocomposites and how they could be engineered to optimise their unique properties.


International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   8th Edition of International Conference on Advanced Nanomaterials and Nanotechnology | 27-28 July 2023 | Delhi, India (Hybrid) Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================






Prof. Baoqing Sun | State Key Laboratory of Respiratory Diseases | China | Best Researcher Award


Prof. Baoqing Sun is an accomplished professor, researcher, and doctoral supervisor. She is the Director of the Office of the Guangzhou Institute of Respiratory Health and the Principal Investigator of the. State Key Laboratory of Respiratory Diseases. in China. Congratulations on your best researcher award by scienceFather. She has published nearly 200 papers in Allergy, ERJ, and other academic journals as the first or corresponding author, and has edited several medical science books. Additionally, she has won many awards and has spoken at and chaired numerous academic conferences on allergic reactions. Furthermore, she has hosted national, provincial, and municipal continuing education courses on diagnosing and treating allergic diseases. Focusing on the monitoring and prevention of respiratory immune-related diseases, Prof. Baoqing Sun has established an allergic disease biospecimen bank and epidemiological clinical data platform to carry out big data mining and disease epidemiological research, and to promote the development of allergy prevention and treatment. Additionally, Prof. Sun is proactively exploring the scientific prevention, control, and diagnosis of major epidemics in terms of COVID-19 diagnostic techniques, rapid detection, early warning and prediction, and has achieved a series of innovative results and breakthroughs, which provides important evidence for epidemic prevention and control decisions. Congratulations for Best wishes for your Future.


International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   International Conference on Advanced Nanomaterials and Nanotechnology  Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================






Thursday, July 20, 2023

Prof. Peiqing Zhang | Ningbo University | China | Best Researcher Award



Prof . Peiqing Zhang was born in 1983 in China. He received the B.S. degree in applied physics from Shantou University and the Ph.D. degree in optics from Sun Yat-sen University. He is now working as a researcher in Ningbo University. in China. Congratulations on your best researcher award by scienceFather. His research interests include Infrared materials and devices, Optical fiber and optical fiber sensing, Femtosecond laser micromachining. He has published more than 150 papers in international academic journals and applied for more than 50 invention patents.Dr. Zhang has more than 12 years of research experience in infrared materials and devices. He invented the composition optimization method of high-performance chalcogenide glasses, and developed a variety of chalcogenide glasses with excellent performance. He improved the laser direct writing preparation technology based on light field regulation, and developed a variety of chalcogenide glass photonic crystals and optical fiber sensors with excellent performance. Congratulations for Best wishes for your Future.


International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   International Conference on Advanced Nanomaterials and Nanotechnology  Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================






Monday, July 17, 2023

This speech delivered by Assoc Prof Dr. Zhenqiang Wang, Harbin Engineering University, China





International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   International Conference on Advanced Nanomaterials and Nanotechnology  Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================






Assoc Prof Dr. Keju Ji | Nanjing University of Aeronautics and Astronautics | China | Best Researcher Award



Assoc Prof Dr. Keju Ji is an associate professor at the College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics. in China. Congratulations on your best researcher award by scienceFather. He is the deputy director of Jiangsu Provincial Key Laboratory of Bionic Functional Materials. His research interests include Micro/nano manufacturing technology, bionic adhesive materials, and industrialization of bionic interface materials. He broke through the key technical bottleneck of large-scale manufacturing of bionic adhesive materials for harsh environments such as high temperature, oxidation, radiation, and vacuum. And he established two companies in China for bionic adhesive materials in 2019 and 2022 respectively. The products have been widely used in the non-destructive manipulation of interfaces in the pan-semiconductor industry and the aerospace field. He successfully promoted bionic adhesive technology from the laboratory to the market through the collaboration of industry, university and research. Congratulations for Best wishes for your Future.

International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   International Conference on Advanced Nanomaterials and Nanotechnology  Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================






Assoc Prof Dr. Hui ZHANG | Xi'an Jiaotong University | China | Best Rese...



Assoc Prof Dr. Hui ZHANG got his Ph.D in Xi’an Jiaotong University in China. in 2016, and got his Ph.D in City University of Hong Kong in 2017. Congratulations on your best researcher award by scienceFather. Now he is an associate professor of Xi’an Jiaotong University. He focused on surface texturing and hydrophobic/hydrophilic surface for years and published about 20 SCI peer view papers. His designed surface textures have been successfully applied to gear spacers in differential boxes of heavy vehicles and the reduction of wear is up to 18 %. Congratulations for Best wishes for your Future.

International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   International Conference on Advanced Nanomaterials and Nanotechnology  Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================






Friday, July 14, 2023

Prof Dr. Emad Aly | Ain Shams | Egypt | Best Researcher Award



Prof. Emad Aly graduated with first honors and excellent degrees from the Department of Mathematics, Ain Shams University . in Egypt. Congratulations on your best researcher award by scienceFather. From the same university, he then obtained two degrees of a General and Specialized Diploma in Applied Mathematics with excellent degrees in both. As a result, he was top of the class of postgraduates (years: 1995-1996). In 1999, ASU honorably awarded Emad a M.Sc. in Heat and Mass Transfer. In 2003, Emad was awarded three scholarships from King Faisal Foundation (KSA), Leeds University (UK) and Royal Society of London in order to continue his studies of the second M.Sc. in Computational Fluid Mechanics. From there, he obtained a Ph.D. studentship from Loughborough University (UK) in Applied Mathematics for Engineering and completed it in 2007. He has worked and continues to work, in close collaboration with scientists from all over the world: India, China, UK, Romania, USA, France, Switzerland, Pakistan, KSA, and Egypt. Finally, reading in Human Resources is the preferred hobby for Prof. Aly. Congratulations for Best wishes for your Future.


International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   International Conference on Advanced Nanomaterials and Nanotechnology  Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================






Assoc Prof Dr. Yanjun Liu | Southern University of Science and Technology | Best Researcher Award



Prof. Ying Chieh Lee is the. College of Semiconductor & Advanced Technology Research/ National Sun Yat-Sen University. IN Taiwan . Congratulations on your best researcher award by scienceFather. His research interests include Thin Film Technology, Electrical Ceramics, Recycled Materials, and nanomaterials. He was promoted from associate professor to full professor with tenure in 2013. He has published more than 90 papers in reputed journals. Congratulations for Best wishes for your Future.

International Research Awards on Advanced Nanomaterials and Nanotechnology
   Website: https://nanotechnology-conferences.sciencefather.com/awards/  #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
   International Conference on Advanced Nanomaterials and Nanotechnology  Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
   Get Connected Here: ==================






Friday, July 7, 2023

An unexpected antenna for nanoscale light sources

An unexpected antenna for nanoscale light sources



The fast switching and modulation of light is at the heart, among other things, of modern data transfer, in which information is sent through fibre optic cables in the shape of modulated light beams. It has been possible for several years now to miniaturise light modulators and to integrate them into chips, but the light sources themselves – light emitting diodes (LEDs) or lasers – still pose problems to engineers. A team of researchers at ETH Zurich led by Prof. Lukas Novotny, together with colleagues at EMPA in Dübendorf and at ICFO in Barcelona, have now found a new mechanism by which tiny but efficient light sources could be produced in the future.The results of their research have recently been published in the scientific journal Nature Materials ("Exciton-assisted electron tunnelling in van der Waals heterostructures").


Trying the unexpected“

To achieve this, we first had to try the unexpected”, says Novotny. For several years he and his coworkers have been working on miniature light sources that are based on the tunnel effect. Between two electrodes (made of gold and graphene in this case) separated by an insulating material, electrons can tunnel according to the rules of quantum mechanics. Under particular circumstances – that is, if the tunnel process is inelastic, meaning that the energy of the electrons is not conserved – light can be created.“Unfortunately, the yield of those light sources is rather poor because the radiative emission is very inefficient”, explains postdoc Sotirios Papadopoulos. This emission problem is well-​known in other areas of technology. In mobile phones, for instance, the chips that create the microwaves needed for transmission are only a few millimetres in size. By contrast, the microwaves themselves have a wavelength of around 20 centimetres, which makes them a hundred times larger than the chip. To overcome this difference in size an antenna is needed (which, in modern phones, is actually no longer visible from the outside). Likewise, in the experiments of the Zurich researchers the wavelength of the light is much larger than the light source.

Semiconductor outside the tunnel junction

“One might think, then, that we were consciously looking for an antenna solution – but in reality we weren’t”, says Papadopoulos. Like other groups before them, the researchers were investigating layers of semiconductor materials such as tungsten disulfide with a thickness of a single atom sandwiched between the electrodes of the tunnel junction in order to create light in this way. In principle one would assume that the optimal position should be somewhere between the two electrodes, maybe a little closer to one than to the other. Instead, the researchers tried something completely different by putting the semiconductor on top of the graphene electrode – completely outside the tunnel junction.








Surprising antenna action

Surprisingly, this apparently illogical position worked very well. The researchers found out the reason for this by varying the voltage applied to the tunnel junction and measuring the current flowing through it. This measurement showed a clear resonance, which matched a so-called exciton resonance of the semiconductor material. Excitons are made of a positively charged hole, which corresponds to a missing electron, and an electron bound by the hole. They can be excited, for instance, by light irradiation. The exciton resonance was a clear sign that the semiconductor was not excited directly by charge carriers – after all, there were no electrons flowing through it – but rather that it absorbed the energy created in the tunnel junction and subsequently re-​emitted it. In other words, it acted very much like an antenna.


Applications in nanoscale light sources

“For now, this antenna is not very good because inside the semiconductor so-called dark excitons are created, which means that not much light is emitted”, Novotny concedes: “Improving this will be our homework for the near future”. If the researchers are successful in making the light emission by the semiconductor more efficient, it should be possible to create light sources that measure only a few nanometres and are, thus, a thousand times smaller than the wavelength of the light they produce. As there are no electrons flowing through the semiconductor antenna, there are also none of the unwanted effects that typically occur at boundaries and that can reduce the efficiency. “In any case, we have opened a door to new applications”, says Novotny. Trying the unexpected has evidently paid off.

8th Edition of International Research Awards on Nanomaterials and Nanotechnology | 27-28 July 2023 | Delhi, India (Hybrid)


Website: https://nanotechnology-conferences.sciencefather.com/awards/


Blog : https://nanotechconferences2022.blogspot.com/

Prof. Wu Cai | China University of Mining and Technology | China | Best Researcher Award



Assoc Prof Dr. Keju Ji is an associate professor at the College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics. in China. Congratulations on your best researcher award by scienceFather. He is the deputy director of Jiangsu Provincial Key Laboratory of Bionic Functional Materials. His research interests include Micro/nano manufacturing technology, bionic adhesive materials, and industrialization of bionic interface materials. He broke through the key technical bottleneck of large-scale manufacturing of bionic adhesive materials for harsh environments such as high temperature, oxidation, radiation, and vacuum. And he established two companies in China for bionic adhesive materials in 2019 and 2022 respectively. The products have been widely used in the non-destructive manipulation of interfaces in the pan-semiconductor industry and the aerospace field. He successfully promoted bionic adhesive technology from the laboratory to the market through the collaboration of industry, university and research. Congratulations for Best wishes for your Future.
  International Research Awards on Advanced Nanomaterials and Nanotechnology
  Website: https://nanotechnology-conferences.sciencefather.com/awards/ #Nanotech #nanotechnology #Nanomaterials #Nanomedicine #Nanoparticles #Synthesis and Self Assembly of Nanomaterials #Nanoscale characterisation #Nanophotonics & Nanoelectronics #Nanobiotechnology #Nanocomposites #Nanomagnetism #Nanomaterials for Energy #Computational Nanotechnology #Commercialization of Nanotechnology #Nanotheranostics #Nanosensors and Actuators #Theranostic Device
  International Conference on Advanced Nanomaterials and Nanotechnology Visit Our Website: https://nanotechnology-conferences.sciencefather.com/
Visit Our Conference Nomination: https://x-i.me/nanocon22 
Visit Our Award Nomination: https://x-i.me/nanoawa22
  Get Connected Here: ==================






Thursday, July 6, 2023

Dr. Sushila Singh | Deparment of Chemistry, CCS,Haryana Agricultural University,Hisar,Haryana | India | Best Researcher Award




Dr. Sushila Singh | Deparment of Chemistry, CCS,Haryana Agricultural University,Hisar,Haryana | India | Best Researcher Award

International Research Awards on Advanced Nanomaterials and Nanotechnology

Website: https://nanotechnology-conferences.sciencefather.com/awards/

Blog : https://nanotechconferences2022.blogspot.com/


Monday, July 3, 2023

Chemists create nanomachines by breaking them apart

 

Chemists create nanomachines by breaking them apart

 "Every act of creation," Picasso famously noted, "is first an act of destruction."
Taking this concept literally, researchers in Canada have now discovered that "breaking" molecular nanomachines basic to life can create new ones that work even better.




 
The image illustrates how the fabrication of nanomachines using one green component (top) leads to a simple functional unit while the fabrication of similar nanomachines using three components (blue, orange and green) allows creating functional units with novel regulation properties (e.g., more or less sensitive -i.e. cooperative or anti-cooperative- and a timer function). (Image: Caitlin Monney)

Evolved over millions of years

Life on Earth is made possible by tens of thousands of nanomachines that have evolved over millions of years. Often made of proteins or nucleic acids, they typically contain thousands of atoms and are less than 10,000 times the size of a human hair.
"These nanomachines control all molecular activities in our body, and problems with their regulation or structure are at the origin of most human diseases," said the new study's principal investigator Alexis Vallée-Bélisle, a chemistry professor at Université de Montréal.
Studying the way these nanomachines are built, Vallée-Bélisle, holder of the Canada Research Chair in Bioengineering and Bio-Nanotechnology, noticed that while some are made using a single component or part (often long biopolymers), others use several components that spontaneously assemble.
"Since most of my students spend their lives creating nanomachines, we started to wonder if it is more beneficial to create them using one or more self-assembling molecular components," said Vallée-Bélisle.

A 'destructive' idea

To explore this question, his doctoral student Dominic Lauzon, had the "destructive" idea of breaking up some nanomachines to see if they could be reassembled. To do so, he made artificial DNA-based nanomachines that could be "destroyed" by breaking them up.
"DNA is a remarkable molecule that offers simple, programmable and easy-to-use chemistry," said Lauzon, the study's first author. "We believed that DNA-based nanomachines could help answer fundamental questions about the creation and evolution of natural and human-made nanomachines."
Lauzon and Vallée-Bélisle spent years performing the experimental validations. They were able to demonstrate that nanomachines could easily withstand fragmentation, but more importantly, that such a destructive event allowed for the creation of various novel functionalities, including different sensitivity levels towards variation in component concentration, temperature and mutations.
What the researchers found is that these functionalities could arise simply by controlling the concentration of each individual component. For example, when cutting a nanomachine in three components, nanomachines were found to activate more sensitively at high concentration of components. In contrast, at low concentration of components, nanomachines could be programmed to activate or deactivate at specific moment in time or to simply inhibit their function.
"Overall, these novel functionalities were created by simply cutting up, or destroying, the structure of an existing nanomachine," said Lauzon. “These functionalities could drastically improve human-based nanotechnologies such as sensors, drug carriers and even molecular computers”.

Evolving new functionalities

Just as Picasso typically destroyed dozens of unfinished works to create his famous artworks, and just like muscles need to break down to get stronger, and innovative new companies are born by eliminating older competitors from the market, nanoscale machines can evolve new functionalities by being taken apart.
Unlike common machines like cell phones, televisions and cars, which are made by combining components using screws and bolts, glue, solder or electronics, "nanomachines rely on thousands of weak dynamic intermolecular forces that can spontaneously reform, enabling broken nanomachines to re-assemble," said Vallée-Bélisle.
In addition to providing nanotechnology researchers with a simple design strategy to create the next generation of nanomachines, the UdeM team's findings also shed light on how natural molecular nanomachines may have evolved.
"Biologists have recently discovered that about 20 per cent of biological nanomachines may have evolved through the fragmentation of their genes," said Vallée-Bélisle. "With our results, biologists now have a rational basis for understanding how the fragmentation of these ancestral proteins could have created new molecular functionalities for life on Earth."


8th Edition of International Research Awards on Advanced Nanomaterials and Nanotechnology | 27-28 July 2023 | Delhi, India (Hybrid)

International Research Awards on Advanced Nanomaterials and Nanotechnology


Website: https://nanotechnology-conferences.sciencefather.com/awards/


Blog : https://nanotechconferences2022.blogspot.com/

Nanopesticides: Revolutionizing Sustainable Agriculture

Nanopesticides: Revolutionizing Sustainable Agriculture In the face of growing global challenges such as food security, climate change, and ...